
Fault Detection and Profiling Algorithms for
Exascale Computing Systems

Nageswara S. V. Rao
Oak Ridge National Laboratory, raons@ornl.gov

I. INTRODUCTION

Exascale computing systems are expected to consist of
millions of components, and the current engineering and man-
ufacturing practices cannot guarantee their fault-free operation
during code executions lasting for hours. It is important to
detect the faults as they occur, and also to develop their
statistical profiles to support: i) fault-tolerant applications in
setting their parameters, such as replication and check-point
levels, and ii) facility operations in removing the faulty proces-
sors from scheduler pools and physically replacing the failed
nodes. Such approaches have been used for fault detection
in processors and digital circuits [2]. However, the exascale
systems require a new class of fault detection and profiling
algorithms that are optimized to their architecture, scale and
component failure statistics, since a deep fault coverage of
even a single processor is NP-hard. Furthermore, due to the
inherent stochastic nature of the component failures in exascale
systems, outputs of such algorithms are non-deterministic and
must be quantified with statistical confidences. The overall goal
here is to detect failures using fast algorithms and utilize their
outputs to build robust statistical state estimates and profiles.

The fault detection and profiling computations constitute
a special class of algorithms, and are much different from
application computations: they “seek out” failures whereas the
latter attempt to avoid or account for them. In this white paper,
we outline a novel detection and profiling approach for the
exascale systems based on fault detection using chaotic maps
and state estimation using finite sample statistics. A complete
development of this approach requires mathematical advances
in a number of areas, including Lyapunov exponent design for
fast diagnosis, optimal pipelining methods for fault coverage,
and the design of statistical probes for robust profile estimates.

II. CLASS OF PROFILING ALGORITHMS

Let Si,i = 0, 1, . . . , denote the (random) state of an
exascale system at time step i; it is a large vector representing
components such as processor cores, communication links
or memory elements. Let S � A(I) denote the output of
algorithm A executed on the system in state S with input
I . A profiling algorithm P is specifically designed to estimate
Ŝi = Si � P(IP) of Si. From an application perspective, its
objectives is to support (a) design of customized application
algorithms AŜi

optimized to Ŝi, and (b) estimation of confi-
dence measures for the output Si �AŜi

(I).

A. Fault Detection Using Chaotic Maps

We propose a detection approach that performs the same
computation on all nodes and compares their outputs by ex-
ploiting two factors: (i) the computations can be performed in

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) trajectory with no failures

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) trajectory with 0.001 error at iteration 50

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) difference in trajectories

Fig. 1. Chaotic map trajectories.

parallel, and (ii) only a few (non-majority) of the components
fail during computations. If there are no faults, all computation
outputs are the same; otherwise, the nodes with failures can
be determined by their deviations from the majority.

An efficient detection of such deviations is critical to this
approach and can be carried out by utilizing chaotic maps [3].
A Poincare map M : <d 7→ <d specifies the trajectory, of a
real-vector state Xi ∈ <d that is updated at each iteration i
such that Xi+1 = M(Xi) [1]. These trajectories may exhibit
complex profiles, even when M is computationally simple.
In Figure 1, we show the trajectories of the logistic map
MLa

(X) = aX(1 − X), which requires two multiplications
and one subtraction; they exhibit chaotic dynamics for a = 4
as shown in Figure 1(a). The trajectories of a chaotic Poincare
map exhibit the exponential divergence, which implies that
trajectories that start from states that are only slightly different
from each other rapidly diverge in a few steps, as shown in
Figure 1(a) and (b). This property is utilized as a mechanism to
rapidly amplify the errors in computations caused by factors
such as bit flip in memory elements or stuck-at fault in an
Arithmetic and Logic Unit (ALU) operation. Two chaotic
trajectories computed on two different processor cores, Ps1
and Ps2 are identical if no fault occurs in either. But, a fault

in one will lead to quick divergence of the outputs, leading to
different Xn values, which are detectable for different values
of n based on on M(.) and type of fault. The faults that could
lead to trajectory divergence range from those in arithmetic and
logical operations performed by the ALU, or faults in registers
and memory, but are limited to the operations used in the
computation of M(.). By prepending chaotic map updates with
mathematical operations, other ALU failure can be detected.
Similarly, assignment operations with memory allocated in
different hierarchies can be used to diagnose memory elements,
memory bus and interconnects such as hypertransport [3].

These detection strategies can be combined into chains
that execute various operations to catch faults, and utilize
chaotic maps to amplify the difference for quick detection
[3]. By pipelining these these chains and strategically guiding
their executions, errors in various parts of the system can be
detected quickly. The exact fault detection times depend on
the Lyapunov exponent defined as LM = ln

∣∣dM
dX

∣∣ and the
nature of faults. These works show the basic feasibility of
the chaotic map approach for fault detection, but a detailed
analysis of the errors and Lyaponov exponents is essential to
assess the performance of this method. Rigorous analysis and
design methods must be developed to optimize the diagnosis
pipelines and Lyapunov exponents, which could lead to a more
general theory of diagnosability of exascale systems.

B. Performance of Profiling Algorithms

We propose a general framework where the profiling algo-
rithm is provided an input vector IP to guide the probing of
components that are prone to more frequent errors by a suitable
choice of the probability distribution PIP . The size of IP is
denoted by |IP | such that a larger size involves testing more
components or running longer and is more likely to detect
errors in more components. The error of the state estimate
Ŝi(IP) = Si � P(IP). is given by

E(Si,P, IP) =‖ Si − Ŝi ‖P,IP= (Si � P(IP))⊗ Si,

where ‖ . ‖P,IP represents the error between the predicted and
actual state, and ⊗ is its representation in the output space. The
expected errors of P are

ĒS(P, IP) =
∫
E(Si,P, IP)dPSi

Ē(P) =
∫
E(P, IP)dPIP .

We are also interested in estimating the performance of the
profiling algorithm for the state Si given by

Ē(Si,P) =
∫ (
Ŝi ⊗ Si

)
dPIP .

Then we have

Ē(P) =
∫
Ē(Si,P)dPSi =

∫
Si

[∫
IP

(
Ŝi ⊗ Si

)
dPIP |Si

]
dPSi ,

which shows that the performance of profiling algorithm can
be improved by customizing its input IP to Si. Since PSi

depends on the error distributions of components and their
correlations, it is mostly unknown and complex; for example,
an overheated shelf of an exascale system will likely lead to
simultaneous faults in several components housed in it.

We outline a method to estimate Ē(P) by running P under
different configurations with actual or induced errors. Now
consider that we executed the profiling algorithm P with fixed
IP on the machine with errors and measured its output Ŝi,j
in state Si,j , for j = 1, 2, . . . , l . Consider the empirical error
committed by P given by

Ê(P) =
1
l

l∑
j=1

(
Ŝi,j ⊗ Si,j

)
.

We can utilize this empirical error as a measure of the
performance of P with the following guarantee

P
{∣∣∣Ē(P)− Ê(P)

∣∣∣ > ε
}
≤ 2e−2ε2l,

which improves as more measurements are collected. This
bound is based on Hoeffding’s inequality, and is valid under
certain statistical independence conditions.

Now consider that we record the sizes of inputs used
by P in different runs, given by IP1 , IP2 , . . . , IPl

. We fit a
regression profile function r(|I|) to the measured Ê(.) values
that estimates the error as function of the size of input I to
P . We assume that r(.) is a non-increasing function in that
the probability of detecting errors does not degrade as P tests
more components. Then based on the Vapnik-Chervonenkis
theory [4], we have the performance bound

P
{

max
|I|

∣∣r(|I|)− Ē(Si, I)
∣∣} ≤ 8ele−εl/4,

on the performance r(x) of the profiling algorithm P for input
of size x (for which measurements may not be available).
This performance bound is in general weaker than the above
guarantee on Ē(P), but provides us qualitative information
about executing the profiling algorithm on longer inputs.

These results show the feasibility of developing profil-
ing algorithms with probabilistic guarantees on the error for
exascale systems. Rigorous methods are needed to extend
this approach to take into account the complex component
failures and their correlations that lead to statistical non-
independence conditions. Designing the optimal inputs and
their distributions for P requires solutions to two classes of
optimization problems: max

IP∈D
ĒS(P, IP) and max

PIP∈P(D)
Ē(P),

where (i) IP is optimized over the set D of detection strategies
that includes as elements different diagnosis pipelines, subsets
of processors and interconnects, and their combinations, and
(ii) PIP is optimized over a set of distributions on D. The
components outlined in this white paper could be parts of a
more general theory of fault diagnosis and profiling algorithms
for exascale computing systems.

REFERENCES

[1] K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos: An Introduction to
Dynamical Systems. Springer-Verlag Pub., Reading, MA, 1996.

[2] N. K. Jha and S. Gupta. Testing of Digital Systems. Cambridge University
Press, 2003.

[3] N. S. V. Rao. Fault detection in multi-core processors using chaotic
maps. In 3rd Workshop on Fault-Tolerance for HPC at Extreme Scale
(FTXS 2013), 2013.

[4] V. N. Vapnik. Statistical Learning Theory. John-Wiley and Sons, New
York, 1998.

